Institut Jean Nicod

Accueil > Séminaires/Colloques > Prix Jean Nicod > Récipiendaires du Prix Jean-Nicod depuis 1993 > E. SPELKE (2009) > Prix et Conférences Jean Nicod 2009



Prix et Conférences Jean Nicod 2009

ELIZABETH SPELKE

Sources de la connaissance humaine


Notice biographique

Elizabeth S. Spelke occupe la Chaire Marshall L. Berkman de Psychologie à l’Université de Harvard. Son laboratoire de recherche est dédié à l’étude des sources des capacités cognitives spécifiquement humaines : les dispositions pour les mathématiques formelles, mais aussi l’aptitude à construire et utiliser des représentations symboliques telles que les cartes topographiques, classer les objets au sein de taxonomies exhaustives, ou encore faire des raisonnements au sujet des autres êtres humains et des groupes sociaux auxquels ils appartiennent. Le Professeur Spelke étudie ces capacités en se penchant sur leurs origines et leur développement chez les nouveaux-nés et les enfants, en envisageant la cognition humaine en relation avec celle des primates, et en comparant les performances d’êtres humains issus de différentes cultures. Ses projets en cours explorent les thèmes suivants chez les nouveaux-nés et les enfants : (1) la reconnaissance des objets, l’extrapolation de leurs mouvements, et leur regroupement sous des catégories fonctionnelles telles que les aliments et les outils ; (2) la reconnaissance des agents humains, les raisonnements relatifs aux actions intentionnelles d’autrui et aux états mentaux afférents, et l’utilisation des autres individus comme sources d’information au sujet des objets ; (3) l’identification des partenaires potentiels pour l’interaction sociale, le partage et la coopération ; (4) le développement de la connaissance des nombres naturels et de l’arithmétique ; et enfin, (5) la représentation de l’espace et le raisonnement géométrique.



Program

Brochure ǀ Poster

Tuesday June, 9th, 4 - 6pm
Ecole Normale Supérieure, 29, rue d’Ulm, 75005 Paris
(Amphithéâtre Jules Ferry)
Toward a cognitive science of human thinking : Why so slow ?
 

Since Plato’s time, scientists have revolutionized our understanding of physical and biological phenomena, as well as our understanding of human perception and action. In contrast, our understanding of higher human cognition has advanced so little that current investigators can cite ancient sources with a straight face. In this lecture, I consider why the most important aspects of the human mind have been so resistant to scientific analysis, and I describe a strategy for overcoming this resistance. The strategy centers on two proposals. First, human cognition builds on a small set of core knowledge systems : systems that are as amenable to study as our systems for perceiving depth or reaching for objects. Second, new cognitive capacities and systems of knowledge develop through the productive combination of these core systems : a combinatorial process that depends on humans’ species-specific faculty for natural language. I illustrate the strategy by describing research on two core systems for representing inanimate, manipulable objects and animate, goal-directed actions. Moreover, I consider one uniquely human capacity that arises when these systems are combined : the capacity to represent artifacts as structured objects with dedicated functions.
format audio mp3 - Listen


Elizabeth Spelke will be awarded the Jean-Nicod Prize after the lecture.



Wednesday, June 10th, 2 - 4 pm
Ecole Normale Supérieure, 45, rue d’Ulm, 75005 Paris (Salle des Actes)
Natural number

The system of natural number concepts has two striking characteristics : it is extremely simple, and it is extremely rare in the living world. Although all living creatures must be sensitive to quantity in order to forage, budget their time, and navigate the social world, only humans represent exact cardinal values and both determine and operate on those values through an iterative counting process. Studies of non-human animals, human infants, and human adults in diverse cultures provide evidence that this ability depends on two core systems that humans share with other animals : a system for representing individuals in parallel, and a system for representing approximate numerical magnitudes. These systems are unrelated to one another in animals and infants, but they are productively combined as children learn number words and counting. Studies of adults in remote cultures, and of adults lacking conventional language input, provide evidence that language plays a central role in the construction of natural number concepts. Further studies of children and adults provide evidence that both language and core number systems remain at the foundations of our mature natural number concepts. I consider how natural language might play this integrative role.
File audio mp3 not available - We apologize for a technical problem encountered on the second lecture.

Tuesday June, 16th, 2 - 4 pm
Ecole Normale Supérieure, 29, rue d’Ulm, 75005 Paris
(Salle Paul Lapie)
Natural geometry

Philosophers from Socrates to Kant have viewed Euclidean geometry as a parade case of an innate system of knowledge. Contrary to this view, studies of animals from ants to humans suggest that biological organisms have multiple systems for representing the shape of the surrounding world, each with a restricted range of application and none with the full power of Euclidean geometry. Humans, however, go beyond the limits of these systems and forge more abstract and general geometric representations. These representations are reflected in our pictures, models, and especially in geometric maps. By using and mastering maps and other spatial symbols, children may construct natural geometry through processes not unlike those that give rise to natural number. But how do children come to understand these symbols ? Recent research suggests that map understanding itself depends on the acquisition of language.
format audio mp3 - Listen


Wednesday June, 17th, 2 - 4 pm
Ecole Normale Supérieure, 29, rue d’Ulm, 75005 Paris (Salle Paul Lapie)
What makes humans smart ? Social cognition, natural language, and human uniqueness.

Humans are primates, whose perceptual and action systems strikingly resemble those of other animals, but humans alone develop new systems of knowledge that solve problems unlike any faced by our ancestors. What innate differences between humans and other animals account for the flexibility and productivity of human cognition ? According to a recent proposal by Tomasello, the primary characteristic that sets humans on a distinctive developmental path is not cognitive but motivational : humans have an innate propensity to share information, tasks, goals, and emotional states. All humans’ cognitive accomplishments, including the acquisition of natural language, develop from this propensity. I consider Tomasello’s proposal in relation to a rival proposal that inverts it. Like natural number and natural geometry, I suggest, shared intentionality builds on core systems shared by diverse animals : in this case, two distinct systems for representing goal-directed actors and social partners. Uniquely human forms of communication and cooperation arise from our unique capacity to combine these core representations productively. Language, once again, may be the source of this capacity.
format audio mp3 - listen
 

Short bibliography

2008. Olson, K. R., & Spelke, E. S. Foundations of cooperation in young children. Cognition, 108, 222-231.
2005. Shusterman, A., & Spelke, E. S. Language and the development of spatial reasoning. In P. Carruthers, S. Laurence, & S. Stich (Eds.), The innate mind : Structure and contents, New York, NY : Oxford University Press, 89-106.
2005. Xu, F., Spelke, E. S., & Goddard, S.. Number sense in human infants. Developmental Science, 8(1), 88-101.
2001. Spelke, E. S., & Hespos, S. J.. Continuity, competence, and the object concept. In E. Dupoux (Ed.), Language, brain, and cognitive development : Essays in honor of Jacques Mehler (pp. 325-340). Cambridge, MA : Bradford/MIT Press.
1996. Carey, S., & Spelke, E. S.. Science and core knowledge. Philosophy of Science, 63(4), 515-533.
1996. Hermer, L., & Spelke, E. S. Modularity and development : The case of spatial reorientation. Cognition, 61, 195-232.
1994. Carey, S., & Spelke, E. S. Domain-specific knowledge and conceptual change. In L. Hirschfeld & S. Gelman (Eds.), Mapping the mind : Domain specificity in cognition and culture, pp. 169-200. Cambridge, UK : Cambridge University Press.
1994. Hermer, L., & Spelke, E. S. A geometric process for spatial reorientation in young children. Nature, 370, 57-59.
1994. Spelke, E. S. Initial knowledge : Six suggestions. Cognition, 50, 431-445. (Reprinted in J. Mehler and S. Franck (Eds.) Cognition on Cognition, pp. 433-448. Cambridge, MA : MIT Press.)
1993. Spelke, E. S., & Van de Walle, G. Perceiving and reasoning about objects : Insights from infants. In N. Eilan, R. McCarthy, & W. Brewer (Eds.), Spatial representation. Oxford : Basil Blackwell.
1990. Spelke, E. S. Principles of object perception. Cognitive Science, 14, 29-56.
1990. Spelke, E. S. Origins of visual knowledge. In D. Osherson et al. (Eds.) An invitation to cognitive science, Vol. 2. Cambridge, MA : MIT Press. (Reprinted in A. I. Goldman (Ed.) Readings in philosophy and cognitive science. Cambridge, MA : MIT Press.)
1988. Spelke, E. S. The origins of physical knowledge. In L. Weiskrantz (Ed.), Thought without language. Oxford, UK : Oxford Press.
1986. Spelke, E. S., & Kestenbaum, R. Les origines du concept d’objet. Psychologie Française, 31, 67-72.


 



Centre National de la Recherche Scientifique
(Institut des Sciences Humaines et Sociales)

Ecole Normale Supérieure
Ecole des Hautes Etudes en Sciences Sociales


CNRS EHESS ENS ENS