Institut Jean Nicod

Accueil du site > Séminaires & Colloques > Autres activités > Soutenance de thèse de Michael Murez

Soutenance de thèse de Michael Murez

Singular Concepts: From Fragments to Files,

La soutenance aura lieu le vendredi 24 juin, à partir de 15h, dans la salle de réunion de l'Institut Jean-Nicod, ENS (Pavillon jardin, 29 rue d'Ulm, 75005 Paris).

Le jury sera composé de :

Mme Imogen DICKIE, Professeur, Université de Toronto
M. Jérôme DOKIC, Directeur d'Etudes à l'EHESS
M. John PERRY, Professeur, Université Stanford et Université de Riverside
M. François RECANATI, Directeur d'Etudes à l'EHESS et Directeur de Recherches au CNRS (directeur de thèse)
M. Brent STRICKLAND, Chargé de Recherches au CNRS

In this thesis, I develop an account of singular concepts, those we use to think directly about particular individuals. Building on the work of other philosophers, I identify singular concepts with mental files. Yet the way I flesh out this proposal significantly departs from philosophical tradition. According to the received philosophical view, any representations that satisfies a certain a priori task analysis counts as a file. I object that this renders the notion useless in distinguishing between genuinely singular thoughts and merely descriptive ones, and that it precludes files from playing any substantive explanatory role. I put forward an alternative conception of files as a cognitive natural kind, firmly rooted in empirical research. I propose that we think of singular concepts/mental files as representations suitably related to object files -- a type of representation initially posited by vision scientists, that has since received independent support from other areas of cognitive science. Being singular percepts of objects, rather than concepts of individuals, object files alone cannot explain the full range of singular thought, however. To address this challenge, I outline a novel 'sorted files' model of core cognition, as composed of multiple subsystems of domain-specific representations of individuals, and explore paths leading from preconceptual singular representations to full-blown singular concepts.